http://www.dfagri.com/

极简椭圆曲线密码学入门

计算机可以使用公钥快速加密消息,使用私钥快速解密消息。

椭圆曲线密码学有什么不同?

A dot C = -D (从 A 点至 C 点画一条直线,与曲线相交于 -D 点)

公钥密码学原理:陷门函数

(译者注:虽然作者在原文中自述学习椭圆曲线密码学是出于自己对比特币和数字货币的兴趣,但此处所讲述的原理集中在加解密上,还未涉及椭圆曲线在数字货币(至少是以太坊)中的主要用途:验证交易的权威性。在以太坊中,用户发送交易的过程并不是使用公钥或私钥加密交易数据,而是使用私钥对交易数据签名,这些签名信息随交易发送,得到这些签名信息的节点可使用椭圆曲线算法恢复出一个地址,与交易原始数据比对即可知该笔交易是不是由有权使用该地址的用户发出的。)

已知 “I love Fox and Friends” 和公钥,我可以计算出 “s80s1s9sadjds9s” ,但是已知 “s80s1s9sadjds9s” 和公钥,我无法计算出 “I love Fox and Friends” 。

  ECC 有什么用途?

-D 点经过 X 轴反射到曲线上的 D 点

如果直线与曲线的交点距离原点太远,我们可以定义一个最大值 X 。如果超过 X 值,直线就会绕回来,从 Y 轴重新开始。如下图所示:

ECC 是一种加密数据的方法,只有特定的人才能对其进行解密。在现实生活中,ECC 有一些常见的用例,但是最主要的用途是加密互联网数据和流量。例如,ECC 可以用来确保在发送电子邮件时,除收件人以外没人可以阅读邮件内容。

公钥密码学的类型有很多,ECC 只是其中一种。此外还有 RSA、Diffie-Helman 等算法。首先,我要简单介绍一下公钥密码学的背景,然后再讨论 ECC 以及这些概念基础上的高层建筑。请各位读者在有空时深入学习一下关于公钥密码学的知识。

  我发现了一个陷门函数,如何创建公钥和私钥?如何用它们来加密数据?

假设 Facebook 将要收到来自特朗普的私信。Facebook 需要确保特朗普在通过互联网发送私信时,没有中间方(国家安全局、互联网服务提供商)能够读取该私信。在使用公钥密码学的情况下,整个过程如下:

公钥可以发送给任何人,它是公开的。

这是一个很好的问题,但是需要更深入的解答。在本文中,我只想简单解释 RSA 和 ECC 。各位读者可以查阅更多技术资料来了解具体细节。

  - arstechnica.com –

重点来了。ECC 与 RSA 的主要区别在于陷门函数。ECC 的陷门函数类似于数学版的台球游戏。我们先在曲线上找到一个特定的点,然后使用函数(通常称为点函数)在曲线上找到一个新的点,接着重复使用点函数,在曲线上不断跳跃,直到找到最后一个点为止。我们来看一下该算法的具体步骤:

如你所见,公钥密码学是一个非常有用的技术。以下是一些关键点。

公钥:起点 A 、终点 E 私钥:从 A 点至 E 点需要经历几次跳跃

公钥:944,871,836,856,449,473 私钥:961,748,941 和 982,451,653

A dot B = -C(从 A 点至 B 点画一条直线,与曲线相交于 -C 点)

如果没有私钥,计算机需要很长一段时间(数百万年)才能暴力破解加密消息。

A dot D = -E (在 A 点至 D 点画一条直线,与曲线相交于 -E 点)

几点疑问

在上述例子中,公钥是一个很大的数,私钥是公钥的两个质因数。这是一个很好的例子,因为将私钥中的数相乘,很容易就能算出公钥,但是你只有公钥的话,需要很长时间才能使用计算机算出私钥。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。